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Abstract

Optimum path forest (OPF) has shown good results compared to traditional su-
pervised classification algorithms like KNN, BC, SVM and ANN-MLP. Despite
its success it is sensible to outliers.[3] The prototype selection method and the
cost function are two essential components of OPF. They have direct impact in
execution time and accuracy of the classifier and define how the decision bound-
ary is created. Here we propose an alternative algorithm for these components,
which better handles outliers and redefines the impact of connectivity on the
decision boundary.
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Chapter 1

Introduction

Supervised classification is the problem of associating a class to an object based
on previously known set of objects for each class. For example, a physician may
want to know if a patient is highly likely to have or not have cancer based on
previous patients data. By comparing the medical test result of the patient with
previous results of other patients who had cancer and who didn’t have cancer,
the physician could make an educated guess as to the likelihood of the current
patient having cancer. The idea is to associate the patient, described by his test
results, with one of two classes, "Has cancer" or "Doesn’t have cancer".

This problem is of interest to many areas like speech recognition, spam
detection, handwriting recognition, chemistry and bioinformatic, to cite a few.

Some well known and used solutions to the problem are K-nearest neighbors
(KNN), Support Vector Machine (SVM), Bayesian Classifier (BC) and Multi-
layer Perceptron neural networks (ANN-MLP). A new solution was proposed in
the years 2000’s and is said to be faster then SVM and superior to the rest [1].
It has no parameters, has native multiclass support and has shown good results
when compared to the other methods [2]. The new solution is called Optimum
Path Forest.

Optimum Path Forest (OPF) is a proposed computational solution for the
supervised classification problem. It shapes the prior knowledge in the form of
a weighted complete graph, from which it then derives a set of trees to represent
each class. A new object is then classified by finding the tree that offers it the
best cost.

The OPF algorithm have two phases, first the data is reshaped as a graph
and the trees for each class are computed. That is called the training phase.
When a new sample arrives, the tree that offers it the best cost is found and
the tree’s class is associated to the sample, this is classification phase.

Two important components of OPF are the prototype selection method and
the cost function. They have direct impact on the training and classification
phases execution time complexity and accuracy. When proposed, OPF were
paired with the MST method for prototype selection and fmax for cost function.
In this work, we introduce two alternatives: A more intuitive solution for proto-
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type selection method, called Nearest Neighbors (NN), and a new cost function
called fpercent. NN provides same and sometimes better accuracy, while main-
taining same execution time complexity. fpercent is better when dealing with
outliers and reinforces one of the main ideas of OPF, that is, connectivity.

This work focuses on the analysis of these two prototype selection meth-
ods and cost functions, comparing how they differ and change the classifier
behaviour. Test on simple and complex databases are then used for experimen-
tation.

The text is organized as follows. In chapter 2 the supervised classification
problem is formalized. In chapter 3 OPF algorithm and its variations are ex-
plained and formalized. The differences between the variations are explored
in chapter 4. In chapter 5, experiments results are shown and discussed. We
conclude in chapter 6 by summarizing the important points and future work.
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Chapter 2

Supervised Classification
Problem

In the area of machine learning, there is an interest in making a computer
categorize objects. The idea is to implement a function that takes a unknown
object from a known domain, and based on previously given knowledge from
the same domain, gives the best guess as to which category that object is part
of.

The goal is to find a function that can correctly infer the category of new
objects not seen before.

To follow the same naming convention of the machine learning community,
the word sample is used to refer to an object and the word class when referring
to a category.

A sample is represented by its feature vector, which for the scope of this
work, will be defined as a sequence of real numbers (v1, v3, v4, ..., vn) ∈ <n. The
feature vector describes the sample. It can be understood as a collection of rele-
vant measures that helps differentiate one sample from another. Choosing good
metrics to create the feature vector is an important step in machine learning in
order to obtain good classification accuracy. In this work, we assume the feature
vectors were already given.

The previous knowledge, also known as training samples, is defined by a
collection of samples T = {s1, s2, ...s|T |} and their respective classes λ(s1), λ(s2),
..., λ(s|T |), where each si is bound to the same domain <n.

The goal, is to use the previous knowledge to find function F , that takes a
sample x ∈ <n and gives it’s true class λ(x).

F (x) = λ(x)

In most cases, when dealing with real world complex problems, function F
can only be approximated. The reason could be, for example, having limited
information in the training set or the features extracted for the samples not
being representative enough.
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To measure how good a classification function is, a validation sample set,
where the classes are known, is used to compare the output of the function with
the true class of each sample. A score is then derived.
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Chapter 3

Optimum Path Forest (OPF)

Optimum Path Forest (OPF) is a framework to create graph based classifiers,
for both supervised and unsupervised classification. Its based on viewing the
samples as nodes in a graph, connected by edges defined by an adjacency relation
and weighted by some distance metric.

In this work, only one version of OPF is used, which uses complete graph for
adjacency relation and euclidean distance for distance metric. For simplicity,
this configuration will be referred by the same acronym ’OPF’.

After shaping the samples as nodes in a complete graph, the first step is to
identify the prototypes (i.e. the important nodes) using the prototype selection
method. Then a process of competition starts where the prototypes try to
conquer the other nodes, forming a collection of trees. These trees represent a
trained classifier. That process describes the training phase of OPF.

When classifying a new sample, a similar process to the prototype competi-
tion is done. Each node offers a cost based computed by the cost function for
the new sample. The one that offers the best cost conquers that sample, which
then is classified as being of the same class. This is the classification phase.

3.1 Training Phase
A trained OPF classifier can be defined as a 4-tuple

(Z1, V, P, L)

where |V | = |P | = |L| = |Z1| and:

• Z1 is the set of training samples represented by their feature vectors;

• P is the parent vector, it represents parenthood and enables the repre-
sentation of trees. P (i) is the parent node of node i;

• L is the label vector, it represents the associated class for each node;
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• V is the cost vector, it associates a cost V (i) to each sample i.

The goal of the training phase is to derive V , P , and L from two inputs:
the sample set Z1 and λ, where λ(i), is the real class of sample i, defined for all
i ∈ Z1. This phase has two steps:

1. Prototype Selections; (i.e. finding the nodes of importance)

2. Prototype Competition, which results in the forest.

3.1.1 Prototype Selection
Each sample will be thought of as being a node in a complete graph. The edges
are weighed by the euclidean distance between the nodes.

There are different methods for finding the prototypes and the definition
of what is a good prototype varies depending on the topology used. In this
configuration, i.e. complete graph, the nodes considered important are the ones
in the boundaries between classes.

To find the prototypes one of the following two methods can used.

Minimum spanning tree (MST)

This method is based on calculating the MST of the graph. All the nodes
that have at least one neighbor of a different class in the MST are selected as
prototypes. This is illustrated in figure 3.1.

Figure 3.1: (a) Minimum spanning tree. The black and white nodes represent
different classes. (b) Nodes selected to be the prototypes are the ones with at
least one neighbor of a different class.

Nearest Neighbor (NN)

In this method each node select m − 1 other nodes as prototypes, where m
is the number of classes. Given a training node set Z, set of classes C =
(c1, c2, c3, ..., cm) we define Z(ci) as the subset of Z that contains all nodes of
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class ci. The collection of nodes selected as prototypes by a node n is defined
by: ⋃

ci∈C−{λ(n)}

{w} where d(n,w) ≤ d(n, u),∀u ∈ Z(ci), w ∈ Z(ci)

where λ(n) ∈ C is the class of node n.
So the complete set of prototypes is:⋃
∀n∈Z

⋃
ci∈C−{λ(n)}

{w} where d(n,w) ≤ d(n, u),∀u ∈ Z(ci), w ∈ Z(ci)

Figure 3.2: (a) Set of nodes, of three classes; (b) Nodes selected to be prototypes
by nodes of class circle; (c) nodes selected to be prototypes at the end of the
process.

3.1.2 Prototype Competition
Here, each node will offer the others a cost, starting by the prototypes. This
step is defined in algorithm 1. Lines 1-8 is initialization. Priority queue Q will
initially contain all prototypes. Since the prototypes have the minimum cost,
they will be the first to be removed from Q. For each removal the removed
sample will offer a cost to all other samples. (line 11, see figure 3.3) The cost
offered is the maximum between its own cost and the distance between them.
If they are of different class however, the cost offered is +∞. That avoids nodes
of a class conquering nodes from another. (line 10-13) If a better cost is offered
to a sample, the offerer is set as parent of that sample, represented by vector
P , and that sample will be inserted in Q. It is inserted in Q to reanalyze if
it can offer better cost to other samples with its updated cost, this guarantees
optimum costs in the end of the process.

Notice that samples offer a +∞ cost to samples of different class. (lines
10-13)

As a result of this process, we obtain an optimum path forest, where each
tree is rooted in a prototype. The triple cost vector, parent vector and label
vector defines our trained OPF classifier.
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Figure 3.3: (a) The two prototypes are in the priority queue Q. The black and
white nodes represent different classes. (b) The black prototype is removed from
Q first and offers a cost to other nodes. (c) The white prototype is removed
from Q and offers its cost to other nodes. (d) After all nodes are removed from
Q.

3.2 Classification Phase
Now we want to define the classification function F , where F takes two param-
eters: a trained OPF classifier represented by the 4-tuple (Z1, V, P, L) and a
sample t yet to be classified. The output of the function is the predicted class
for t.

F can be defined as:

F ((Z1, V, P, L), t) = L(n) where fcost(n, t) ≤ fcost(a, t),∀a ∈ Z1, n ∈ Z1

The algorithm therefore is simple: Calculate the cost each node in the Z1

offers, take the node which offer the lowest (n) and associate that nodes class
(L(n)) as the predicted class.

What still need to be defined is the cost function, fcost. Two cost functions
are proposed. The first one, fmax is originally introduced with OPF [1]. The
second cost function, fpercent, is introduced here.

3.2.1 fmax

This cost function can be defined as the biggest distance in the path from a
node to its prototype.

fmax(n, t) =

{
max{d(n, t), fmax(P (n), n)} n is not prototype

d(n, t) otherwise

A more intuitive idea of fmax is to imagine we connect the sample to be classified
t to a node n by an edge and find the biggest edge value from it to the prototype.
This is represented in figure 3.4.

3.2.2 fpercent

The idea of this cost function is that the nodes selected as prototypes are in
a region of uncertainty, while nodes that are not selected as prototypes are
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Algorithm 1 Prototype Competition
Input: Training set Z1 λ rotulated, prototype set S ⊂ Z1 and distance function
d.
Output: Parent vector P , cost vector V and label vector L.
Auxiliary: variable cst, priority queue Q.
1: for all t ∈ Z1 do
2: P (t)← nil
3: V (t)← +∞
4: for all s ∈ S do
5: P (s)← nil ,V (s)← 0 ,L(s)← λ(s)
6: Insert s in Q with cost V (s)

7: while Q is not empty do
8: Remove s from Q where V (s) is minimum.
9: for all t ∈ Z1 where s 6= t and V (t) > V (s) do

10: if λ(s)! = λ(t) then
11: cst← max{V (s), d(s, t)}
12: else
13: cst← +∞
14: if cst < V (t) then
15: if V (t) 6= +∞ then remove t from Q
16: P (t)← s
17: L(t)← L(s)
18: V (t)← cst
19: Insert t in Q with cost V (t)

in a more certain region. The farthest the node is from the prototype, that
is, the more nodes in between them, the more power this node will have on
classification.

Different from fmax, which is a way to decided which value to select (which
edge), the fpercent is a modifier applied after calculating the distance.

The modifier value is an integer number, that represent a percentage. The
modifier value of node n can be defined as:

M(n) =

{
5% n is prototype

−2% ∗ Pnum(n) otherwise

Where Pnum(n) is the number of nodes n is away from its prototype in the tree.
It can be defined as:

Pnum(n) =

{
0 n is prototype

1 + Pnum(P (n)) otherwise

When offering a cost to a new node t the distance is calculated and the
modifier is applied on top. So the cost a node n offers to t is defined by

fpercent(n, t) = d(n, t) + d(n, t) ∗max{M(n),−50%}
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Figure 3.4: fmax (a) Starting situation where n is offering a cost to t. (b) By
fmax, the cost is the biggest distance from t to the prototype.

Notice we limit the modifier to a minimum of -50%.
Figure 3.5 show how the nodes modifier will look like.

Figure 3.5: fpercent Two trees of two classes, circle and retangle, modifier is
shown inside each node.

As efficiency goes, the modifier of each node can be calculated after the
prototype competition phase and be stored in vector V in O(n). In other words,
there is no relevant efficiency difference between using fmax and fpercent.
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Chapter 4

Comparison

This chapter shows the differences between the different methods and cost func-
tions for two situations: (a) linear separable, and (b) outliers.

All methods behave similarly for non-linear situations, since the overlapping
areas will be mostly composed of prototypes, while showing clear differences in
(a) and (b).

To compare the solutions, we go through the two cases, showing how the
prototypes selections differ, and how the cost functions creates the boundary
for each set of prototypes.

4.1 Linear Separable
In a linear separable problem, what we want is to have a well define border.
The nodes of importance are the ones close to the border, not the internal ones.

The usual result of applying NN to a linear problem is to have most or
all border nodes as prototypes. In such situation, applying fmax or fpercent is
irrelevant. If a classification node is internal, the same classification will happen,
if it is in the border, nodes of same power(as both are prototypes) will try to
conquer it, leaving it to be conquered by the nearest prototype, whatever the
cost function is. So using NN gives us a normal linear separation between classes
for both cost functions.

In contrast, when using MST, except special cases, some nodes in the border
are selected as prototypes, and the rest is connected to these prototypes, forming
a structure where the prototypes form a bridge between classes in the MST.

The frontier nodes that are not prototype are the ones that change the
decision boundary. Here one concept of OPF is visible, connectivity. The idea
is that the more connected a class is, the more classification power it has.

When node cost is computed by fmax, what is really being done is to set a
minimum cost for that node. It will not be able to offer less than the minimum
when doing classification. The higher the minimum is, the less classification
power the node has. The way this is supposed to show connectivity is that if
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the frontier nodes are too sparse, their power will be decreased.
This has problems though. Firstly, it is unlikely that a node in the frontier

will be far from its prototype (because that edge cost will not be desired in the
MST), what happens more often is it being selected as prototype as well. When
the frontier node is not far from its prototype, the minimum set for its cost is
not strong enough to make difference.

In fpercent, the power is inverted. Prototypes receive a penalty and non-
prototype frontier nodes receive a boost. We known that only closest nodes
to another class are selected as prototypes. The idea of fpercent is that those
nodes, the prototypes, are too uncertain and therefore should have less power in
classification. If it has other nodes connected to it, that means more certainty,
so those nodes receive a boost in power.

4.2 Outliers
In both NN and MST methods, the outlier will be selected as a prototype,
together with a few nodes of the other class.

When dealing with outliers, fpercent outperforms fmax. The reason for this
is that an outlier already receives a percentage penalty by being prototype. Also
it is surrounded by non-prototype nodes which are boosted.
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Chapter 5

Experiments

In this section the OPF algorithm is tested with different databases, results are
shown and an analysis is presented. The results are split in 4 cases: MST +
fmax, MST + fpercent, NN + fmax and NN + fpercent.

5.1 Shape databases
First, we test with databases known as shapes1. They are two dimensional
databases with different decision boundaries. The test method used was 4-fold
cross-validation, with each fold having similar class ratio. The bases are shown
in figure 5.1. The results are shown in table 5.1.

Table 5.1: Mean accuracy for shapes databases using 4-fold cross-validation

Database Name MST+fmax MST+fpercent NN+fmax NN+fpercent
Flame 100.0% 99.59% 100% 99.59%
D31 96.42% 96.48% 95.97% 96.55%
Aggregation 99.74% 99.74% 99.74% 99.74%
Compound 97.5% 97.75% 97.5% 97.75%
Spiral 100.0% 100.0% 100.0% 100.0%
R15 99.5% 99.5% 99.5% 99.5%
Pathbased 98.98% 99.32% 98.98% 98.98%
Jain 100.0% 100.0% 100.0% 100.0%

The result were similar through all methods. What is of interest here is that
all new proposed solutions (fpercent and nearest neighbors prototype selection
method) are capable of solving simple problems.

1can be found at:
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Figure 5.1: View of shapes databases. Colors represent different classes.

5.2 Complex databases
In the second test we use OPF in known databases, more specifically, the shut-
tle database2, Image Segmentation database3, the Pen-Based Recogni-
tion of Handwritten Digits database4 and the Breast Cancer Wisconsin
database5. The objective here is show its efficacy with more complex problems.

For the Shuttle, Image Segmentation andHandwritten digits datasets,
the author predefined training and testing sets were used. The shuttle has 43500
training samples and 14500 test samples, 9 attributes, 7 classes where class 1
encompass 80% of samples. The image segmentation dataset has 2310 samples,
210 training, 2100 testing samples, 7 classes with similar density in both sets
and 19 attributes per sample. The handwritten digits dataset has 10992 sam-
ples, 7494 training, 3498 testing, 16 attributes per sample and 10 classes with
similar density in both sets. Accuracy results for these bases are shown in table
5.2.

The Breast Cancer dataset has 2 classes, 9 attributes per sample, 699
samples from which 16 were removed for containing partial data (therefore only
683 samples were used). To test, 4-fold cross-validation was applied, maintaining
the class ratio similar between folds. The mean accuracy and number of errors

2https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
3https://archive.ics.uci.edu/ml/datasets/Image+Segmentation
4https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
5https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
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are reported in table 5.2.

Table 5.2: Accuracy and amount of incorrectly classified samples for complex
datasets

Database Name MST+fmax MST+fpercent NN+fmax NN+fpercent
Accuracy Wrong Accuracy Wrong Accuracy Wrong Accuracy Wrong

Shuttle 99.87% 19 99.88% 18 99.88% 17 99.88% 18
Image Segmentation 86.57% 282 87.76% 257 87.47% 263 87.71% 258
Handwritten digits 97.77% 78 96.37% 127 97.74% 79 96.94% 107
Breast Cancer 95.02% 8.5 95.89% 7 95.01% 8.5 95.89% 7

In both Image Segmentation and Breast Cancer databases, there is a slight
better performance by fpercent over fmax. That result is inverse for Handwritten
Digits database. Both prototype selection method show similar results for all
bases, the one exception being when paired with fpercent on Handwritten Digits
database, where the result is better.
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Chapter 6

Conclusion

We presented the two alternatives algorithms, one for prototype selection and
one for cost function. A comparison was made between the methods, arguing
that the proposed methods are better at handling outliers and showing how it
creates a different decision boundary.

Than experimentation was done to analyze its performance in real problems,
showing mostly similar results for the cost functions and a slight better accuracy
for nearest neighbors with fmax.

6.1 Future work
Although fpercent decision boundary is good for outliers, it seem to have a
negative impact on other cases. An idea is to set a mean boost to all nodes
in the tree, instead strong boost to some and weak to others. Prototype cost
modifier should not change, for maintaining control over outliers.

Nearest Neighbors (NN) has shown better results compared to the MST
method. It may be interesting to make a more in depth comparison and maybe
propose a new version that better harness its strengths.

OPF has many components that can be rethought. One point we didn’t
touch was the prototype competition. Improvements here mean forming bet-
ter trees, which has direct impact on the cost functions behaviour, so that is
interesting to explore.
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